
ScalaOnGAE Documentation
Release 1.0

Chris Horuk

November 05, 2014

Contents

1 Introduction 3

2 Installation 5
2.1 Google App Engine Setup . 5
2.2 Scala Setup . 5
2.3 Ant Setup . 6

3 Configuring Ant 7
3.1 Initial Configurations . 7
3.2 Creating Targets . 8

4 Getting Acquainted With Google App Engine 11
4.1 Expected Directory Structure . 11
4.2 The Deployment Descriptor (web.xml) . 11
4.3 The App Config Descriptor (appengine-web.xml) . 11
4.4 Configure Logging Behavior . 12

5 Hello, Scala! 13
5.1 The Configuration Code . 13
5.2 The Servlet Code . 14

6 Storing Data 15
6.1 Using the Low-Level Datastore API . 15
6.2 Using the Google Cloud SQL API . 19
6.3 Using the Google Cloud Storage API . 22

7 Indices and tables 29

i

ii

ScalaOnGAE Documentation, Release 1.0

Contents:

Contents 1

ScalaOnGAE Documentation, Release 1.0

2 Contents

CHAPTER 1

Introduction

This documentation revolves around a technology investigation into the Java implementation of the Google App En-
gine (GAE). The purpose of this documentation is to help other developers get started using GAE quickly so that they
can focus on creating their apps. As the name suggests, much of the programming in this documentation is imple-
mented using the Scala programming language. As such, the detailed instructions presented throughout will be geared
specifically towards using Scala with GAE; with the exception of the views, which are written using JSPs.

Another important note is that I am using OS X Mountain Lion. For this reason, some of the instructions will be
geared specifically towards Macs, but I will always try to link to some generic downloads, etc. for others.

3

ScalaOnGAE Documentation, Release 1.0

4 Chapter 1. Introduction

CHAPTER 2

Installation

To be certain that anyone can easily follow along with this documentation, I will first discuss the installation and setup
required. Some of this is required to use Google App Engine (GAE), while some of it is required because of the
specific design decisions that I made (i.e. using Scala and Ant).

2.1 Google App Engine Setup

First, I will discuss the setup required to use the Java implementation of GAE.

1. The most obvious part of this setup process is to ensure that you have the latest Java Developer Kit (JDK)
installed. I will be using Java 7 throughout, but you can get away with Java 6 if absolutely necessary.

2. The next most obvious step is to download the latest GAE SDK. I am using version 1.7.7 of the GAE Java SDK,
but there might be a newer one out if you are reading this in the future (hello from the past!). You’ll find plenty
of information provided by Google if you are having trouble with this step, but once you download the GAE
SDK you should have a top level directory of the form “appengine-java-sdk-x.x.x” where “x.x.x” will be the
SDK version number. For clarity, just rename this directory to “appengine-java-sdk” as this is how I will refer
to it.

3. This step introduces the first point where you have multiple options to choose from. To facilitate the development
process when working with GAE, a project configuration tool of some sort is needed. For those of you who like
using IDEs, Eclipse has incredible support for GAE (see Google Plugin for Eclipse). I chose to go a different
route and use a command line configuration tool called Apache Ant. You can find some information about how
to install Ant on their website, but I will discuss this in some detail later as well.

2.2 Scala Setup

As Scala will be used for much of the programming throughout this documentation, you will of course need to setup
Scala. For all of you OS X users out there, this setup should be hilariously easy. Go get Homebrew if you don’t have
it yet and then simply type brew install scala at a Terminal prompt to get the latest stable release. As of this writing,
the latest stable release is version 2.10.1, which is what I will be using.

For those of you not using OS X (what are you doing with your life?), you can get the latest stable release of Scala
here.

5

http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
https://developers.google.com/appengine/downloads#Google_App_Engine_SDK_for_Java
https://developers.google.com/appengine/docs/java/tools/eclipse
https://ant.apache.org
http://mxcl.github.io/homebrew/
http://www.scala-lang.org/downloads

ScalaOnGAE Documentation, Release 1.0

2.3 Ant Setup

Apache Ant is a really useful command line tool that allows you to accomplish the repetitive tasks involved with
developing and deploying quickly and efficiently.

1. To use Apache Ant you must have a Java environment installed, but you need this for GAE as well so you should
already have it, right?

2. Next, download one of the ant binaries and uncompress the file into a folder where you wish Ant to reside.

3. Once you have found a home for Ant, you need to set an environment variable called ANT_HOME to the direc-
tory where Ant resides. You should also have an environment variable called JAVA_HOME and SCALA_HOME
at this point as well.

Note: If you are using OS X, there is a very easy way to set these environment variables that re-
quires administrator privileges. You can set them all in the file /etc/launchd.conf in the form “setenv
ANT_HOME /path/to/apache-ant-x.x.x” on separate lines. After saving this file, simply enter grep
-E “^setenv” /etc/launchd.conf | xargs -t -L 1 launchctl at the Terminal prompt and restart the Ter-
minal app. Now when you enter the command export with no options, you should see your new
environment variables listed among others.

4. Finally, you need to add the Ant bin to your PATH.

Note: On OS X, this can be done by adding “${ANT_HOME}/bin” to the /etc/paths file.

If you are successful, ant -version should return the version of Ant that you have installed. I am using version 1.9.0
because this version is the most recent stable release as of this writing.

6 Chapter 2. Installation

https://ant.apache.org/bindownload.cgi

CHAPTER 3

Configuring Ant

Google provides a lot of information about how to configure Ant for use with Java, but most of this information does
not apply if you wish to use Ant with Scala. This section will explain how to configure Ant for use with Scala and will
repeat some of the information from the Google docs that still applies for Scala.

3.1 Initial Configurations

The build.xml file is used to configure Ant and a new build.xml file should be placed in the top level directory of each
project you wish to use it for. There are a number of tasks you can accomplish with Ant, but to use it with GAE there
are some initial configurations you need to do.

3.1.1 Import the GAE Ant Macros

There are a number of GAE Ant macros that allow you to execute GAE commands through Ant. In order to use these
macros, you must tell Ant where to look for them, which can be accomplished with the following two lines:

<property name=”sdk.dir” location=”../appengine-java-sdk” />

<import file=”${sdk.dir}/config/user/ant-macros.xml” />

Note: This assumes that you have placed the GAE Java SDK in the directory which contains your project’s
top-level directory.

3.1.2 Set the Project CLASSPATH

To set the CLASSPATH that Ant will use when executing tasks, you simply need to create a path element with an id
of “project.classpath”. You typically include any extra JARs that your project needs in the war/WEB-INF/lib directory
and thus your CLASSPATH will need to include those JARs as well as the GAE SDK JARs.

<path id=”project.classpath”>

<pathelement path=”${build.dir}” />

<fileset dir=”${lib.dir}”>

<include name=”**/*.jar” />

</fileset>

<fileset dir=”${sdk.dir}/lib”>

<include name=”shared/**/*.jar” />

7

https://developers.google.com/appengine/docs/java/tools/ant

ScalaOnGAE Documentation, Release 1.0

</fileset>

</path>

Note: All of the Ant examples here will use properties defined earlier in the build.xml file. Refer to the
complete build.xml sample files included in the github samples for clarity.

3.2 Creating Targets

If you have worked with Ant before then you already know all about targets. For those that haven’t used Ant, targets
are, in a nutshell, how you specify the tasks that Ant can execute. You can create them with the <target name=”“>
directive and add dependencies so that certain targets are always executed. Then you can execute them at the command
line with the format ant targetName, where targetName is the name you specify in the build.xml file.

3.2.1 The Scala Init Target

To be able to use Scala commands within Ant, you need an initializer target that will load up all of the Scala commands
that Ant can use. In all of the build.xml files, this is the target with the name “init”. Once this target is created, you can
use Scala commands within Ant by making the target that uses the Scala command depend on the “init” target. For
clarity, the “init” target is displayed below.

<target name=”init”>

<path id=”build.classpath”>

<pathelement location=”${scala-library.jar}” />

<pathelement location=”${build.dir}” />

</path>

<taskdef resource=”scala/tools/ant/antlib.xml”>

<classpath>

<pathelement location=”${scala-compiler.jar}” />

<pathelement location=”${scala-library.jar}” />

<pathelement location=”${scala-reflect.jar}” />

</classpath>

</taskdef>

</target>

3.2.2 A Scala Compile Target

One target that clearly must depend on “init” is the “compile” target, as it will need to use the scalac command in
order to compile the .scala files. A sample “compile” target might look like the following:

<target name=”compile” depends=”copyjars, init” description=”Compiles Scala source and copies other source
files to the WAR.”>

<mkdir dir=”${build.dir}” />

<copy todir=”${build.dir}”>

<fileset dir=”${src.dir}”>

8 Chapter 3. Configuring Ant

ScalaOnGAE Documentation, Release 1.0

<exclude name=”**/*.scala” />

</fileset>

</copy>

<scalac srcdir=”${src.dir}” destdir=”${build.dir}” classpathref=”project.classpath” />

</target>

Note: The “copyjars” target simply copies all of the JARs that GAE will need when executing your
application. Refer to the complete build.xml sample files included in the github samples for clarity.

3.2.3 A Target for Starting the Development Server

Here’s where those GAE Ant macros that we imported are going to come in handy. A common workflow when
developing is to make some changes, ensure that the files all still compile and then finally ensure that they behave as
expected when running. You can address this entire workflow with one command at the Terminal prompt using the
“runserver” target displayed below, i.e. ant runserver. Because it depends on the “compile” target, when you execute
the “runserver” target, all actions associated with the “compile” target will be executed first and just like that you can
compile all of your Scala code and launch the GAE development server.

<target name=”runserver” depends=”compile” description=”Starts the development server.”>

<dev_appserver war=”war” port=”8888” />

</target>

3.2.4 Other Targets

There are a number of other targets that you can define within the build.xml file to facilitate development. Take a look
at the complete build.xml sample files included in the github samples for more ideas.

3.2. Creating Targets 9

ScalaOnGAE Documentation, Release 1.0

10 Chapter 3. Configuring Ant

CHAPTER 4

Getting Acquainted With Google App Engine

Before you begin developing and deploying apps to GAE, there are a few pieces of information that are vital to your
success.

4.1 Expected Directory Structure

When deploying your app to GAE, your compiled classes and other resources must be placed within a specific file
structure to be properly served by GAE. GAE uses the WAR format, such that any file within the war directory in your
apps top level directory is considered part of the complete app. A snapshot of the war directory might look like the
following:

war/
WEB-INF/
lib/
classes/

Inside of the war directory, but outside of the WEB-INF directory, you would place any static resources such as image
files, as well as any interfaces for your app such as JSP files. Just inside the WEB-INF directory, you would place any
app configuration files such as the web.xml or appengine-web.xml files. The lib directory is meant to contain the class
files of any classes that your app needs while executing, while the classes directory contains the class files for your
app’s classes.

4.2 The Deployment Descriptor (web.xml)

To specify your apps routes, require authentication for specific pages, and other web page configuration, you use the
web.xml file. Every GAE app needs a deployment descriptor as this file is where you map your servlets, JSPs and other
files to actual URLs. For a complete description of this file, see the Google Developer docs.

4.3 The App Config Descriptor (appengine-web.xml)

For further configurations within your app and to declare your app’s registered app ID and version number, you use
the appengine-web.xml file. One important element to set within this file is the <threadsafe> element. By writing
<threadsafe>true</threadsafe> in your appengine-web.xml file, you are specifying that GAE can use concurrent
requests while executing your app. You can also handle configuration such as declaring what files are static (images,
CSS, etc.) and what files are resources (JSPs, etc.), configure cache expiration times for static files and much more.
For a complete description of this file, see Google’s documentation.

11

https://developers.google.com/appengine/docs/java/config/webxml
https://developers.google.com/appengine/docs/java/config/appconfig

ScalaOnGAE Documentation, Release 1.0

4.4 Configure Logging Behavior

All GAE logging is through java.util.logging by default. To configure the logging behavior of your app, you must add
the following lines to your appengine-web.xml file:

<system-properties>
<property name="java.util.logging.config.file" value="WEB-INF/logging.properties"/>

</system-properties>

These lines tell GAE to look in the war/WEB-INF directory for a file named logging.properties for logging configura-
tions. Inside of this logging.properties file you can specify different logging levels:

• FINEST (lowest level)

• FINER

• FINE

• CONFIG

• INFO

• WARNING

• SEVERE (highest level)

A simple logging.properties file might look like this:

Set the default logging level for all loggers to WARNING
.level = WARNING
Specifically set the logging level for the guestbook package to INFO
guestbook.level = INFO

12 Chapter 4. Getting Acquainted With Google App Engine

CHAPTER 5

Hello, Scala!

Now that you have completed the necessary installations and other setup tasks, you are ready to start coding! This first
code example is the obligatory Hello, World! program with a small addition. This addition involves using the Google
Users service to allow visitors to sign in with a Google account.

In this code example, you will learn how to:

• Write a simple servlet in Scala to display a webpage.

• Map a Scala servlet to a URL for use by Google App Engine.

• Use the Google Users service to allow users to sign in with a Google account.

5.1 The Configuration Code

First things first, let’s set up the deployment descriptor and app config descriptor files so that we can test our app as
we go. The deployment descriptor should look like this:

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5">
<servlet>

<servlet-name>helloworld</servlet-name>
<servlet-class>helloworld.HelloWorldServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>helloworld</servlet-name>
<url-pattern>/helloworld</url-pattern>

</servlet-mapping>
<welcome-file-list>

<welcome-file>helloworld</welcome-file>
</welcome-file-list>

</web-app>

This code maps the servlet class helloworld.HelloWorldServlet to the servlet name helloworld and subsequently maps
that servlet name to the /helloworld URL. Similarly, by placing the servlet’s name in the welcome file list, the servlet
will be mapped to the root URL as well.

The other file we need is the app config descriptor, which should look like this:

<?xml version="1.0" encoding="utf-8"?>
<appengine-web-app xmlns="http://appengine.google.com/ns/1.0">

<application></application>
<version>1</version>

13

ScalaOnGAE Documentation, Release 1.0

<threadsafe>true</threadsafe>
</appengine-web-app>

Note: The <application> tag is used to inform GAE of the app’s registered ID. Since this app will only be used for
testing purposes, it will not have an app ID.

5.2 The Servlet Code

First things first, let’s write a simple Scala servlet that will display a webpage with some static content. Create a
HelloWorldServlet.scala file and add the following code:

package helloworld

import javax.servlet.http.{HttpServlet, HttpServletRequest => HSReq, HttpServletResponse => HSResp}

class HelloWorldServlet extends HttpServlet
{

override def doGet(req : HSReq, resp : HSResp) =
{

resp.setContentType("text/plain")
resp.getWriter().println("Hello World, from Scala")

}
}

This simple servlet will display a webpage with the text “Hello World, from Scala” on it. Deploy your app to the
development server and load up the app in your web browser to confirm.

Now for the addition. The Google Users service API provides an interface to allow users to sign in with a Google
account, as well as for developers to interact with the current user. The following import statement is needed to use
the Google Users service:

import com.google.appengine.api.users.{User, UserService => UServ, UserServiceFactory => UServFactory}

Once you have added this import statement to your HelloWorldServlet.scala file, change the doGet method to look
like the following:

override def doGet(req : HSReq, resp : HSResp) =
{

val userService = UServFactory.getUserService()
val user = userService.getCurrentUser()

if (user != null)
{

resp.setContentType("text/plain")
resp.getWriter().println("Hello, " + user.getNickname() + ", from Scala")

}
else

resp.sendRedirect(userService.createLoginURL(req.getRequestURI()))
}

Now, when someone visits the hello world app’s webpage, they will either be prompted to sign in to a Google account
or a welcome message will be displayed, tailored to their Google account’s nickname.

Note: On the development server, the Google Users service simulates the expected behavior by simply
allowing you to sign in with any email address you wish without having to enter a password. This allows
you to easily test your app when developing.

14 Chapter 5. Hello, Scala!

CHAPTER 6

Storing Data

The chief concern of most web apps, and really any app in general, is how and where to store the app’s data. With GAE,
you have three different options: a basic schemaless object datastore, a cloud SQL datastore, and an advanced object
datastore. The basic schemaless object datastore is where most will start and provides a very scalable option with a
choice between using JDO, JPA or a low-level Datastore API. For a more advanced object datastore, Google Cloud
Storage allows developers to store their data directly on Google’s infrastructure with almost no limit on individual
object size and a number of other amazing features. If you need a relational database, the Google Cloud SQL service
is exactly what you want: a relational database in the cloud.

In the following sections, I will give examples on how to use each of the three different data storing options with Scala.

6.1 Using the Low-Level Datastore API

The low-level Datastore API gives you access to App Engine’s schemaless High Replication Datastore. The Datastore
holds objects, referred to as entities, each with one or more properties. Entities are grouped by kind, but two entities
of the same kind don’t need to have the same properties; the grouping is merely used for the purpose of queries. To
retrieve information from the Datastore, you must construct a query with filter parameters to configure how the query’s
results are sorted. Every query needs one or more Datastore indexes, which are just tables containing entities in an
order specified by the index’s properties.

The sections that follow are part of a code example displaying how to:

• Generate indexes to support your app’s Datastore queries.

• Use JSPs to create your apps interfaces.

• Use the low-level Datastore API to create new entities and execute queries on those entities.

6.1.1 A Note About Indexing

Any interactions you have with your app while it is running on the development server will generate indexes automat-
ically for you as needed. These indexes will be placed inside of a file named datastore-indexes-auto.xml inside of a
directory named appengine-generated in your war/WEB-INF directory. You can also specify your own indexes inside
of a file named datastore-indexes.xml that you must store directly in your war/WEB-INF directory. A simple example
of this file follows:

<datastore-indexes autoGenerate="true">

<datastore-index kind="Greeting" ancestor="true">
<property name="date" direction="desc"/>

</datastore-index>

15

https://developers.google.com/appengine/docs/java/datastore/overview
https://developers.google.com/cloud-sql/
https://developers.google.com/appengine/docs/java/googlestorage/
https://developers.google.com/appengine/docs/java/googlestorage/

ScalaOnGAE Documentation, Release 1.0

</datastore-indexes>

The outer <datastore-indexes> tag is the wrapper you place around all of the indexes you wish to declare. The
autoGenerate=”true” attribute specifies that you want GAE to take both indexes in this file as well as in the datastore-
indexes-auto.xml file into account when you are uploading your app. This attribute is important because if a user tries
to navigate to a page where a query is executed for which you have no index, the page will fail to load and the index
will only then begin to be generated. This process takes some time and user experience will suffer greatly.

If you wish to simulate the behavior of the production environment, you can set autoGenerate to “false” in your
datastore-indexes.xml file and when a query can’t be satisfied on your development server, a DatastoreNeedIndexEx-
ception will be thrown. The exception will also list both the minimal index and the index it would have auto-generated.
For a more in-depth discussion of index selection, see this article.

6.1.2 The Deployment Descriptor

The deployment descriptor file for this code example looks like this:

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5">
<servlet>

<servlet-name>sign</servlet-name>
<servlet-class>guestbook.SignGuestbookServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>sign</servlet-name>
<url-pattern>/sign</url-pattern>

</servlet-mapping>
<welcome-file-list>

<welcome-file>guestbook.jsp</welcome-file>
</welcome-file-list>

</web-app>

Notice that the welcome file is not a servlet, but a JSP file. More on that in the next section.

6.1.3 Creating the User Interface

The user interface for this code example is created in a JSP file to avoid having the servlet code get too messy and to
introduce more modularity. The file, named guestbook.jsp, looks like this:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ page import="java.util.List" %>
<%@ page import="com.google.appengine.api.users.User" %>
<%@ page import="com.google.appengine.api.users.UserService" %>
<%@ page import="com.google.appengine.api.users.UserServiceFactory" %>
<%@ page import="com.google.appengine.api.datastore.DatastoreServiceFactory" %>
<%@ page import="com.google.appengine.api.datastore.DatastoreService" %>
<%@ page import="com.google.appengine.api.datastore.Query" %>
<%@ page import="com.google.appengine.api.datastore.Entity" %>
<%@ page import="com.google.appengine.api.datastore.FetchOptions" %>
<%@ page import="com.google.appengine.api.datastore.Key" %>
<%@ page import="com.google.appengine.api.datastore.KeyFactory" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<html>
<head>
<link type="text/css" rel="stylesheet" href="/stylesheets/main.css" />

16 Chapter 6. Storing Data

https://developers.google.com/appengine/articles/indexselection

ScalaOnGAE Documentation, Release 1.0

</head>

<body>

<%
String guestbookName = request.getParameter("guestbookName");
if (guestbookName == null) {

guestbookName = "default";
}
pageContext.setAttribute("guestbookName", guestbookName);

UserService userService = UserServiceFactory.getUserService();
User user = userService.getCurrentUser();
if (user != null) {

pageContext.setAttribute("user", user);
%>

<p>Hello, ${fn:escapeXml(user.nickname)}! (You can <a href="<%= userService.createLogoutURL(request.getRequestURI()) %>">sign out.)</p>
<%

} else {
%>

<p>Hello! <a href="<%= userService.createLoginURL(request.getRequestURI()) %>">Sign in to include your name with greetings you post.</p>
<%

}
%>

<%
DatastoreService datastore = DatastoreServiceFactory.getDatastoreService();
Key guestbookKey = KeyFactory.createKey("Guestbook", guestbookName);

// Run an ancestor query to ensure we see the most up-to-date
// view of the Greetings belonging to the selected Guestbook.
Query query = new Query("Greeting", guestbookKey).addSort("date", Query.SortDirection.DESCENDING);
List<Entity> greetings = datastore.prepare(query).asList(FetchOptions.Builder.withLimit(5));
if (greetings.isEmpty()) {

%>
<p>Guestbook ’${fn:escapeXml(guestbookName)}’ has no messages.</p>

<%
} else {

%>
<p>Messages in Guestbook ’${fn:escapeXml(guestbookName)}’.</p>

<%
for (Entity greeting : greetings) {
pageContext.setAttribute("greeting_content", greeting.getProperty("content"));
if (greeting.getProperty("user") == null) {

%>
<p>An anonymous person wrote:</p>

<%
} else {

pageContext.setAttribute("greeting_user", greeting.getProperty("user"));
%>

<p>${fn:escapeXml(greeting_user.nickname)} wrote:</p>
<%

}
%>

<blockquote>${fn:escapeXml(greeting_content)}</blockquote>
<%

}
}

6.1. Using the Low-Level Datastore API 17

ScalaOnGAE Documentation, Release 1.0

%>

<form action="/sign" method="post">
<div><textarea name="content" rows="3" cols="60"></textarea></div>
<div><input type="submit" value="Post Greeting" /></div>
<input type="hidden" name="guestbookName" value="${fn:escapeXml(guestbookName)}"/>

</form>

<form action="/guestbook.jsp" method="get">
<div><input type="text" name="guestbookName" value="${fn:escapeXml(guestbookName)}"/></div>

<div><input type="submit" value="Switch Guestbook"/></div>
</form>

</body>
</html>

The Datastore query executed to retrieve all of the entries in a guestbook requires a Datastore index that you have
already seen in the indexing section. The query is executed with the call to prepare() and the result is filtered to only
include the 5 most recent entries, which are then displayed on the webpage.

6.1.4 Creating New Guestbook Entries

The sign servlet is where new guestbook entries are created. The code for the sign servlet looks like this:

package guestbook

import java.util.logging.Logger
import java.util.Date
import javax.servlet.http.{HttpServlet, HttpServletRequest => HSReq, HttpServletResponse => HSResp}
import com.google.appengine.api.users.{User, UserService => UServ, UserServiceFactory => UServFactory}
import com.google.appengine.api.datastore.{DatastoreService, DatastoreServiceFactory => DSFactory, Entity, Key, KeyFactory}

class SignGuestbookServlet extends HttpServlet
{

val log = Logger.getLogger("SignGuestbookServlet")

override def doPost(req : HSReq, resp : HSResp)
{

val userService = UServFactory.getUserService()
val user = userService.getCurrentUser()

val guestbookName = req.getParameter("guestbookName")
val guestbookKey = KeyFactory.createKey("Guestbook",guestbookName)
val content = req.getParameter("content")
val date = new Date()

val greeting = new Entity("Greeting",guestbookKey)
greeting.setProperty("user",user)
greeting.setProperty("date",date)
greeting.setProperty("content",content)

val datastore = DSFactory.getDatastoreService()
datastore.put(greeting)

log.info("Just created new entry in guestbook: " + content + "\nfrom user: " + user)

resp.sendRedirect("/guestbook.jsp?guestbookName=" + guestbookName)
}

18 Chapter 6. Storing Data

ScalaOnGAE Documentation, Release 1.0

}

Here you can see a new entity, a “Greeting” entity, is created using the key specific to the name of the guestbook that
the user posted in. The name of the user, the current date and time, and the content of the post are all stored with the
entity and a message is logged to the INFO level displaying the content of the message and the name of the user that
posted it.

6.2 Using the Google Cloud SQL API

Google Cloud SQL is a service that lets you locate your MySQL Databases in Google’s cloud. GAE support of Google
Cloud SQL is currently experimental, but you can currently try it out for free until next month (June 2013). If you
need a relational database for your GAE app, Google Cloud SQL is your answer. There is one key difference to note
from the other database options when you are using the Google Cloud SQL service: you must have your own local
MySQL instance configured in order to mirror the Google Cloud SQL service during development.

To set up your app to use the Google Cloud SQL service, you need to follow the instructions in the first two sections
of this Google documentation. You also need to make sure you have downloaded the mysql-connector-java.jar and
placed it inside of your appengine-java-sdk/lib/impl directory.

6.2.1 Modifying the Ant Build File

Before we look at the Google Cloud SQL API in use, we need to make a slight modification to the “runserver” target
defined in our buid.xml file. In order to be able to use Google Cloud SQL services on the development server, we need
to pass a few extra command line arguments to the call to launch the development server. The target now looks like
this:

<target name="runserver" depends="compile" description="Starts the development server.">
<dev_appserver war="war" port="8888">

<options>
<arg value="--jvm_flag=-Drdbms.server=local" />
<arg value="--jvm_flag=-Drdbms.driver=com.mysql.jdbc.Driver" />
<arg value="--jvm_flag=-Drdbms.url=jdbc:mysql://localhost:3306/yourdatabase?user=root" />

</options>
</dev_appserver>

</target>

These three new flags tell the development server to use the local MySQL instance inside of the database named
“yourdatabase” with the root user. If you wanted to log in with an account other than the root user, simply replace the
string after the question mark with username=userName&password=password, replacing userName with your
desired user name and password with the password for that user.

6.2.2 Creating the User Interface

The user interface will once again be created using JSPs for all the same reasons as before, however this time the app
itself has changed slightly: users can no longer switch between different guestbooks while posting messages. The
main reason behind this change is due to the use of a relational database and the fact that we can no longer create new
“groupings” or database tables on the fly. The code looks like this:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ page import="java.util.List" %>
<%@ page import="java.sql.*" %>
<%@ page import="com.google.appengine.api.rdbms.AppEngineDriver" %>
<%@ page import="com.google.appengine.api.users.User" %>

6.2. Using the Google Cloud SQL API 19

https://developers.google.com/appengine/docs/java/cloud-sql/developers-guide
http://dev.mysql.com/downloads/connector/j/

ScalaOnGAE Documentation, Release 1.0

<%@ page import="com.google.appengine.api.users.UserService" %>
<%@ page import="com.google.appengine.api.users.UserServiceFactory" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<html>
<head>
<link type="text/css" rel="stylesheet" href="/stylesheets/main.css" />
</head>

<body>

<%
UserService userService = UserServiceFactory.getUserService();
User user = userService.getCurrentUser();
if (user != null) {
pageContext.setAttribute("user", user);

%>
<p>Hello, ${fn:escapeXml(user.nickname)}! (You can <a href="<%= userService.createLogoutURL(request.getRequestURI()) %>">sign out.)</p>

<%
} else {

%>
<p>Hello! <a href="<%= userService.createLoginURL(request.getRequestURI()) %>">Sign in to include your name with greetings you post.</p>

<%
}

%>

<%
Connection connection = null;
connection = DriverManager.getConnection("jdbc:google:rdbms://instance_name/guestbook");
ResultSet resultSet = connection.createStatement().executeQuery("SELECT guestName, content, entryID FROM entries");

%>

<table style="border: 1px solid black">
<tbody>

<tr>
<th width="35%" style="background-color: #CCFFCC; margin: 5px">Name</th>
<th style="background-color: #CCFFCC; margin: 5px">Message</th>
<th style="background-color: #CCFFCC; margin: 5px">ID</th>

</tr>
<%

while (resultSet.next())
{

String guestName = resultSet.getString("guestName");
String content = resultSet.getString("content");
int id = resultSet.getInt("entryID");

%>

<tr>
<td><%= guestName %></td>
<td><%= content %></td>
<td><%= id %></td>

</tr>

<%
}
connection.close();

%>

</tbody>

20 Chapter 6. Storing Data

ScalaOnGAE Documentation, Release 1.0

</table>

No more messages!
<p>Sign the guestbook!</p>
<form action="/sign" method="post">

<div>Message:

<textarea name="content" rows="3" cols="60"></textarea>
</div>
<div><input type="submit" value="Post Greeting" /></div>
<input type="hidden" name="guestbookName" />

</form>
</body>

</html>

The important part of this code is where a new Connection object is created. At the call to DriverManager‘s getCon-
nection() method, you would need to replace “instance_name” with the name of your Google Cloud SQL instance and
“guestbook” with the name of the database you wish to establish a connection to. A SQL query is then executed to
retrieve all of the entries in the entries table of the guestbook database before they are displayed.

6.2.3 Creating New Guestbook Entries

The sign servlet is where new guestbook entries are created. The code for the sign servlet looks like this:

package guestbook

import com.google.appengine.api.rdbms.AppEngineDriver
import java.util.logging.Logger
import java.util.Date
import javax.servlet.http.{HttpServlet, HttpServletRequest => HSReq, HttpServletResponse => HSResp}
import com.google.appengine.api.users.{User, UserService => UServ, UserServiceFactory => UServFactory}
import java.sql._

class SignGuestbookServlet extends HttpServlet
{

val log = Logger.getLogger("SignGuestbookServlet")

override def doPost(req : HSReq, resp : HSResp)
{

val out = resp.getWriter()
var connection:Connection = null
val userService = UServFactory.getUserService()
val user = userService.getCurrentUser()

try {
DriverManager.registerDriver(new AppEngineDriver())

connection = DriverManager.getConnection("jdbc:google:rdbms://instance_name/guestbook")
val content = req.getParameter("content")
if (content == "")
out.println("<html><head><link type=’text/css’ rel=’stylesheet’ href=’/stylesheets/main.css’ /></head><body>You are missing a message! Try again! Redirecting in 3 seconds...</body></html>")

else
{

val statement ="INSERT INTO entries (guestName, content) VALUES(? , ?)"
val preparedStatement = connection.prepareStatement(statement)
preparedStatement.setString(1, if (req.getUserPrincipal() != null) req.getUserPrincipal().getName() else "anonymous")
preparedStatement.setString(2, content)
var success = 2
success = preparedStatement.executeUpdate()
if (success == 1)

6.2. Using the Google Cloud SQL API 21

ScalaOnGAE Documentation, Release 1.0

out.println("<html><head><link type=’text/css’ rel=’stylesheet’ href=’/stylesheets/main.css’ /></head><body>Success! Redirecting in 3 seconds...</body></html>")
else if (success == 0)
out.println("<html><head><link type=’text/css’ rel=’stylesheet’ href=’/stylesheets/main.css’ /></head><body>Failure! Please try again! Redirecting in 3 seconds...</body></html>")

}
}

catch
{
case e:SQLException => e.printStackTrace()
}
finally
{

if (connection != null)
try

connection.close()
catch

{
case ignore:SQLException => ()

}
}

resp.setHeader("Refresh","3; url=/guestbook.jsp")
}

}

Once again, we need to create a Connection object and use a DriverManager to help initiate the connection. We then
create a prepared statement and place the message contents, along with a user name if the poster was signed in, and
update the database with this new entry. The last line sets the header on the response to refresh the browser window 3
seconds after the method completes with the guestbook.jsp interface.

6.3 Using the Google Cloud Storage API

The Google Cloud Storage service is very similar to the basic Datastore only with less limits placed due to the higher
billing costs for using the service. The Google Cloud Storage service is also currently experimental with GAE,
but there are a number of features that are not offered by the other datastore options. These include access control
lists, OAuth 2.0 authentication and authorization, the ability to resume upload operations if they’re interrupted, and a
RESTful API among others. One important fact is that all objects created with the Google Cloud Storage service are
immutable. To modify an existing object, you must overwrite it with a new object containing your changes.

Before you can begin using the Google Cloud Storage APIs, you need to activate the Google Cloud Storage service
for your app and enable billing. The detailed steps can be found in the prerequisites section of this document. Once
you have activated the service, you are ready to start using the Google Cloud Storage APIs.

6.3.1 Creating the User Interface

As with the other two code examples, the user interface will be created using JSPs. The code looks like this:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ page import="java.util.List" %>
<%@ page import="com.google.appengine.api.users.User" %>
<%@ page import="com.google.appengine.api.users.UserService" %>
<%@ page import="com.google.appengine.api.users.UserServiceFactory" %>
<%@ page import="com.google.appengine.api.files.AppEngineFile" %>
<%@ page import="com.google.appengine.api.files.FileReadChannel" %>
<%@ page import="com.google.appengine.api.files.FileService" %>
<%@ page import="com.google.appengine.api.files.FileServiceFactory" %>

22 Chapter 6. Storing Data

https://developers.google.com/appengine/docs/java/googlestorage/overview

ScalaOnGAE Documentation, Release 1.0

<%@ page import="com.google.appengine.api.files.FileWriteChannel" %>
<%@ page import="com.google.appengine.api.files.GSFileOptions.GSFileOptionsBuilder" %>
<%@ page import="java.net.URL" %>
<%@ page import="com.google.appengine.api.urlfetch.HTTPRequest" %>
<%@ page import="com.google.appengine.api.urlfetch.HTTPResponse" %>
<%@ page import="com.google.appengine.api.urlfetch.HTTPMethod" %>
<%@ page import="com.google.appengine.api.urlfetch.URLFetchService" %>
<%@ page import="com.google.appengine.api.urlfetch.URLFetchServiceFactory" %>
<%@ page import="org.w3c.dom.Document" %>
<%@ page import="org.w3c.dom.*" %>
<%@ page import="javax.xml.parsers.DocumentBuilderFactory" %>
<%@ page import="javax.xml.parsers.DocumentBuilder" %>
<%@ page import="java.io.BufferedReader"%>
<%@ page import="java.nio.channels.Channels" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<html>
<head>
<link type="text/css" rel="stylesheet" href="/stylesheets/main.css" />

</head>

<body>

<%
String BUCKETNAME = "YOUR_BUCKET_NAME";

String guestbookName = request.getParameter("guestbookName");
if (guestbookName == null) {

guestbookName = "default";
}
pageContext.setAttribute("guestbookName", guestbookName);

UserService userService = UserServiceFactory.getUserService();
User user = userService.getCurrentUser();
if (user != null) {

pageContext.setAttribute("user", user);
%>

<p>Hello, ${fn:escapeXml(user.nickname)}! (You can <a href="<%= userService.createLogoutURL(request.getRequestURI()) %>">sign out.)</p>
<%

} else {
%>

<p>Hello! <a href="<%= userService.createLoginURL(request.getRequestURI()) %>">Sign in to include your name with greetings you post.</p>
<%

}
%>

<%

URL url = new URL("http://" + BUCKETNAME + ".storage.googleapis.com");

HTTPRequest bucketListRequest = new HTTPRequest(url, HTTPMethod.GET);
URLFetchService service = URLFetchServiceFactory.getURLFetchService();
HTTPResponse bucketLisResponse = service.fetch(bucketListRequest);
String content = new String(bucketLisResponse.getContent(), "UTF-8");

DocumentBuilderFactory docBuilderFactory = DocumentBuilderFactory.newInstance();
DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder();
Document doc = docBuilder.parse(content);

6.3. Using the Google Cloud Storage API 23

ScalaOnGAE Documentation, Release 1.0

// normalize text representation
doc.getDocumentElement().normalize();
NodeList listOfEntries = doc.getElementsByTagName("Contents");
if (listOfEntries.getLength() == 0)
{

%>
<p>Guestbook ’${fn:escapeXml(guestbookName)}’ has no messages.</p>
<%

}
else
{

%>
<p>Messages in Guestbook ’${fn:escapeXml(guestbookName)}’.</p>
<%

for (int i=0; i<listOfEntries.getLength(); i++)
{

Node entryNode = listOfEntries.item(i);
if (entryNode.getNodeType() == Node.ELEMENT_NODE)
{

Element entryElement = (Element) entryNode;
String entryMessageKey = entryElement.getElementsByTagName("Key").item(0).getNodeValue().trim();
String fileName = "/gs/" + BUCKETNAME + "/" + entryMessageKey;
AppEngineFile readableFile = new AppEngineFile(fileName);
FileService fileService = FileServiceFactory.getFileService();
FileReadChannel readChannel = fileService.openReadChannel(readableFile, false);
BufferedReader reader = new BufferedReader(Channels.newReader(readChannel, "UTF-8"));
String line = reader.readLine();
pageContext.setAttribute("greeting_content", line);

%>
<blockquote>${fn:escapeXml(greeting_content)}</blockquote>
<%

}
}

}

%>

<form action="/sign" method="post">
<div><textarea name="content" rows="3" cols="60"></textarea></div>
<div><input type="submit" value="Post Greeting" /></div>
<input type="hidden" name="guestbookName" value="${fn:escapeXml(guestbookName)}"/>

</form>

<form action="/guestbook.jsp" method="get">
<div><input type="text" name="guestbookName" value="${fn:escapeXml(guestbookName)}"/></div>

<div><input type="submit" value="Switch Guestbook"/></div>
</form>

</body>
</html>

There is a lot going on in the interface code, so let’s break it down into sections. The first section being discussed is
the section we are familiar with from the other code examples:

<%
String BUCKETNAME = "YOUR_BUCKET_NAME";

String guestbookName = request.getParameter("guestbookName");
if (guestbookName == null) {

24 Chapter 6. Storing Data

ScalaOnGAE Documentation, Release 1.0

guestbookName = "default";
}
pageContext.setAttribute("guestbookName", guestbookName);

UserService userService = UserServiceFactory.getUserService();
User user = userService.getCurrentUser();
if (user != null) {
pageContext.setAttribute("user", user);

%>
<p>Hello, ${fn:escapeXml(user.nickname)}! (You can <a href="<%= userService.createLogoutURL(request.getRequestURI()) %>">sign out.)</p>

<%
} else {

%>
<p>Hello! <a href="<%= userService.createLoginURL(request.getRequestURI()) %>">Sign in to include your name with greetings you post.</p>

<%
}

%>

This section of the code is merely checking to see if the user is logged in to a Google Account and displaying the
appropriate login or logout link. The one addition to this section is the BUCKETNAME variable. This variable should
be set to the name of the bucket that you created in the prerequisites section of this document.

The next section of the code to examine deals with fetching all of the objects in the bucket specified by the BUCKET-
NAME variable:

URL url = new URL("http://" + BUCKETNAME + ".storage.googleapis.com");

HTTPRequest bucketListRequest = new HTTPRequest(url, HTTPMethod.GET);
URLFetchService service = URLFetchServiceFactory.getURLFetchService();
HTTPResponse bucketLisResponse = service.fetch(bucketListRequest);
String content = new String(bucketLisResponse.getContent(), "UTF-8");

This section of the code is displaying a few different techniques and services. First off, the GAE URL Fetch service
APIs are being used to send a GET request to the bucket we are interested in. This process involves creating an
HTTPRequest object to represent the GET request, creating a URLFetchService object to fetch the request’s response
and an HTTPResponse object to store the response for use. The GET request in question is part of the Google
Cloud Storage XML RESTful APIs, which are documented here. As GAE support for Google Cloud Storage is still
experimental, there is no set Java method to retrieve the contents of a bucket, which is why we have to resort to this
method.

In the next section of the code, we parse the XML response of our GET request:

DocumentBuilderFactory docBuilderFactory = DocumentBuilderFactory.newInstance();
DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder();
Document doc = docBuilder.parse(content);

// normalize text representation
doc.getDocumentElement().normalize();
NodeList listOfEntries = doc.getElementsByTagName("Contents");
if (listOfEntries.getLength() == 0)
{

%>
<p>Guestbook ’${fn:escapeXml(guestbookName)}’ has no messages.</p>
<%

}
else
{

%>
<p>Messages in Guestbook ’${fn:escapeXml(guestbookName)}’.</p>

6.3. Using the Google Cloud Storage API 25

https://developers.google.com/appengine/docs/java/googlestorage/overview
https://developers.google.com/storage/docs/developer-guide

ScalaOnGAE Documentation, Release 1.0

The first three lines create a DocumentBuilder object that we can use to parse the XML response. We then normalize
the text representation so that we can query our newly parsed response content by XML tag names. We get the
“Contents” tag and check to see if there are any messages stored within this guestbook’s bucket.

The next section of the code represents the logic behind extracting all of the messages from the XML response:

<%
for (int i=0; i<listOfEntries.getLength(); i++)
{

Node entryNode = listOfEntries.item(i);
if (entryNode.getNodeType() == Node.ELEMENT_NODE)
{

Element entryElement = (Element) entryNode;
String entryMessageKey = entryElement.getElementsByTagName("Key").item(0).getNodeValue().trim();
String fileName = "/gs/" + BUCKETNAME + "/" + entryMessageKey;
AppEngineFile readableFile = new AppEngineFile(fileName);
FileService fileService = FileServiceFactory.getFileService();
FileReadChannel readChannel = fileService.openReadChannel(readableFile, false);
BufferedReader reader = new BufferedReader(Channels.newReader(readChannel, "UTF-8"));
String line = reader.readLine();
pageContext.setAttribute("greeting_content", line);

%>
<blockquote>${fn:escapeXml(greeting_content)}</blockquote>
<%

}
}

}

%>

This section is where we use the Google Cloud Storage Java APIs to access each file within the bucket. We first create
the file name using the bucket name and the key retrieved from the XML response. We then create an AppEngineFile
object to represent the file and a FileReadChannel object to represent the read channel. Due to the fact that all messages
are stored on a single line, we simply retrieve this line from the reader and display it on the page.

The final section of the code represents the same two forms used in the original datastore code sample.

6.3.2 Creating New Guestbook Entries

The sign servlet is where new guestbook entries are created. The code for the sign servlet looks like this:

package guestbook

import java.util.logging.Logger
import java.util.Date
import java.io.PrintWriter
import java.nio.channels.Channels
import javax.servlet.http.{HttpServlet, HttpServletRequest => HSReq, HttpServletResponse => HSResp}
import com.google.appengine.api.users.{User, UserService => UServ, UserServiceFactory => UServFactory}
import com.google.appengine.api.files.{AppEngineFile, FileReadChannel, FileService, FileServiceFactory, FileWriteChannel}
import com.google.appengine.api.files.GSFileOptions.GSFileOptionsBuilder

class SignGuestbookServlet extends HttpServlet
{

val log = Logger.getLogger("SignGuestbookServlet")
// You might make this depend on the guest book name for example.
val BUCKETNAME = "YOUR_BUCKET_NAME"
// You might make this depend on information specific to the message being posted for example.

26 Chapter 6. Storing Data

ScalaOnGAE Documentation, Release 1.0

val FILENAME = "YOUR_FILE_NAME"

override def doPost(req : HSReq, resp : HSResp)
{

val userService = UServFactory.getUserService()
val user = userService.getCurrentUser()

val guestbookName = req.getParameter("guestbookName")
val content = req.getParameter("content")
val date = new Date()

val fileService = FileServiceFactory.getFileService()
val optionsBuilder = new GSFileOptionsBuilder().setBucket(BUCKETNAME).setKey(FILENAME).setAcl("public-read").addUserMetadata("dateCreated", date.toString()).addUserMetadata("author", user.toString())
val writableFile = fileService.createNewGSFile(optionsBuilder.build())

// Lock for writing because we intend to finalize this object.
val lockForWrite = true
val writeChannel = fileService.openWriteChannel(writableFile, lockForWrite)
val out = new PrintWriter(Channels.newWriter(writeChannel, "UTF8"))
out.println(content)
out.close()

// Finalize the object so that it can be read from later.
writeChannel.closeFinally()
log.info("Just created new entry in guestbook: " + content + "\nfrom user: " + user)

resp.sendRedirect("/guestbook.jsp?guestbookName=" + guestbookName)
}

}

The first important thing to note involves the two new values added to the servlet, BUCKETNAME and FILENAME.
While these are represented by constant values, you would likely need to change these for different entries. You might
for example base your bucket name on the name of the guest book that you are submitting an entry to. You might
base the file name on some unique combination of the message’s properties, such as the author’s name and the date
created. Once you have figured this out, all you need to do is use a GSFileOptionsBuilder object to configure your
new message and then create a new GSFile object to represent it. You then open up a channel for writing and lock it
for exclusive access since the message is going to be finalized in this process.

As noted earlier, files stored using the Google Cloud Storage services are immutable once saved. Therefore you need
to explicitly finalize the object to state that you are done making changes to it. The servlet ends by redirecting back to
the guestbook.

6.3. Using the Google Cloud Storage API 27

ScalaOnGAE Documentation, Release 1.0

28 Chapter 6. Storing Data

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

29

	Introduction
	Installation
	Google App Engine Setup
	Scala Setup
	Ant Setup

	Configuring Ant
	Initial Configurations
	Creating Targets

	Getting Acquainted With Google App Engine
	Expected Directory Structure
	The Deployment Descriptor (web.xml)
	The App Config Descriptor (appengine-web.xml)
	Configure Logging Behavior

	Hello, Scala!
	The Configuration Code
	The Servlet Code

	Storing Data
	Using the Low-Level Datastore API
	Using the Google Cloud SQL API
	Using the Google Cloud Storage API

	Indices and tables

